The 2021 battery technology roadmap
Ma, J
Li, Y
Grundish, NS
Goodenough, JB
Chen, Y
Guo, L
Peng, Z
Qi, X
Yang, F
Qie, L
Wang, C-A
Huang, B
Huang, Z
Chen, L
Su, D
Wang, G
Peng, X
Chen, Z
Yang, J
He, S
Zhang, X
Yu, H
Fu, C
Jiang, M
Deng, W
Sun, C-F
Pan, Q
Tang, Y
Li, X
Ji, X
Wan, F
Niu, Z
Lian, F
Wang, C
Wallace, GG
Fan, M
Meng, Q
Xin, S
Guo, Y-G
Wan, L-J
- Publisher:
- IOP Publishing
- Publication Type:
- Journal Article
- Citation:
- Journal of Physics D: Applied Physics, 2021, 54, (18), pp. 1-44
- Issue Date:
- 2021-02-16
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Full metadata record
Field | Value | Language |
---|---|---|
dc.contributor.author | Ma, J | |
dc.contributor.author | Li, Y | |
dc.contributor.author | Grundish, NS | |
dc.contributor.author | Goodenough, JB | |
dc.contributor.author | Chen, Y | |
dc.contributor.author | Guo, L | |
dc.contributor.author | Peng, Z | |
dc.contributor.author | Qi, X | |
dc.contributor.author | Yang, F | |
dc.contributor.author | Qie, L | |
dc.contributor.author | Wang, C-A | |
dc.contributor.author | Huang, B | |
dc.contributor.author | Huang, Z | |
dc.contributor.author | Chen, L | |
dc.contributor.author |
Su, D https://orcid.org/0000-0002-3972-8205 |
|
dc.contributor.author |
Wang, G https://orcid.org/0000-0003-4295-8578 |
|
dc.contributor.author | Peng, X | |
dc.contributor.author | Chen, Z | |
dc.contributor.author | Yang, J | |
dc.contributor.author | He, S | |
dc.contributor.author | Zhang, X | |
dc.contributor.author | Yu, H | |
dc.contributor.author | Fu, C | |
dc.contributor.author | Jiang, M | |
dc.contributor.author | Deng, W | |
dc.contributor.author | Sun, C-F | |
dc.contributor.author | Pan, Q | |
dc.contributor.author | Tang, Y | |
dc.contributor.author | Li, X | |
dc.contributor.author | Ji, X | |
dc.contributor.author | Wan, F | |
dc.contributor.author | Niu, Z | |
dc.contributor.author | Lian, F | |
dc.contributor.author | Wang, C | |
dc.contributor.author | Wallace, GG | |
dc.contributor.author | Fan, M | |
dc.contributor.author | Meng, Q | |
dc.contributor.author | Xin, S | |
dc.contributor.author | Guo, Y-G | |
dc.contributor.author | Wan, L-J | |
dc.date.accessioned | 2022-02-08T00:43:36Z | |
dc.date.available | 2022-02-08T00:43:36Z | |
dc.date.issued | 2021-02-16 | |
dc.identifier.citation | Journal of Physics D: Applied Physics, 2021, 54, (18), pp. 1-44 | |
dc.identifier.issn | 0022-3727 | |
dc.identifier.issn | 1361-6463 | |
dc.identifier.uri | http://hdl.handle.net/10453/154261 | |
dc.description.abstract | Sun, wind and tides have huge potential in providing us electricity in an environmental-friendly way. However, its intermittency and non-dispatchability are major reasons preventing full-scale adoption of renewable energy generation. Energy storage will enable this adoption by enabling a constant and high-quality electricity supply from these systems. But which storage technology should be considered is one of important issues. Nowadays, great effort has been focused on various kinds of batteries to store energy, lithium-related batteries, sodium-related batteries, zinc-related batteries, aluminum-related batteries and so on. Some cathodes can be used for these batteries, such as sulfur, oxygen, layered compounds. In addition, the construction of these batteries can be changed into flexible, flow or solid-state types. There are many challenges in electrode materials, electrolytes and construction of these batteries and research related to the battery systems for energy storage is extremely active. With the myriad of technologies and their associated technological challenges, we were motivated to assemble this 2020 battery technology roadmap. | |
dc.language | English | |
dc.publisher | IOP Publishing | |
dc.relation.ispartof | Journal of Physics D: Applied Physics | |
dc.relation.isbasedon | 10.1088/1361-6463/abd353 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | 02 Physical Sciences, 09 Engineering | |
dc.subject.classification | Applied Physics | |
dc.title | The 2021 battery technology roadmap | |
dc.type | Journal Article | |
utslib.citation.volume | 54 | |
utslib.for | 02 Physical Sciences | |
utslib.for | 09 Engineering | |
pubs.organisational-group | /University of Technology Sydney | |
pubs.organisational-group | /University of Technology Sydney/Faculty of Science | |
pubs.organisational-group | /University of Technology Sydney/Faculty of Science/School of Mathematical and Physical Sciences | |
pubs.organisational-group | /University of Technology Sydney/Strength - CCET - Centre for Clean Energy Technology | |
utslib.copyright.status | open_access | * |
pubs.consider-herdc | false | |
dc.date.updated | 2022-02-08T00:43:33Z | |
pubs.issue | 18 | |
pubs.publication-status | Published | |
pubs.volume | 54 | |
utslib.citation.issue | 18 |
Abstract:
Sun, wind and tides have huge potential in providing us electricity in an environmental-friendly way. However, its intermittency and non-dispatchability are major reasons preventing full-scale adoption of renewable energy generation. Energy storage will enable this adoption by enabling a constant and high-quality electricity supply from these systems. But which storage technology should be considered is one of important issues. Nowadays, great effort has been focused on various kinds of batteries to store energy, lithium-related batteries, sodium-related batteries, zinc-related batteries, aluminum-related batteries and so on. Some cathodes can be used for these batteries, such as sulfur, oxygen, layered compounds. In addition, the construction of these batteries can be changed into flexible, flow or solid-state types. There are many challenges in electrode materials, electrolytes and construction of these batteries and research related to the battery systems for energy storage is extremely active. With the myriad of technologies and their associated technological challenges, we were motivated to assemble this 2020 battery technology roadmap.
Please use this identifier to cite or link to this item:
Download statistics for the last 12 months
Not enough data to produce graph