Climate impacts on wheat phenology and production using mutisource data in NSW, Australia

Publisher:
IEEE
Publication Type:
Conference Proceeding
Citation:
International Geoscience and Remote Sensing Symposium (IGARSS), 2016, 2016-November, pp. 6296-6299
Issue Date:
2016-11-01
Full metadata record
© 2016 IEEE.Wheat is the most important grain crop in Australia, which plays a significant role in world grain-trading market. However, climate warming, water shortage, as well as more frequent extreme weather events (e.g., heatwaves, droughts and floods), under pressure of food demand, would pose great risks to all aspects of wheat production worldwide, especially in Australia with high climate variability. This study aggregated multi-source observational data by using meteorological statistics, in-situ investigation data and the MODIS Enhanced Vegetation Index (EVI) product to explore and examine the correlation between climate variability and spatial-temporal patterns of wheat phenology metrics and productivity. The results from tests over 370 wheat trial sites showed: 1) narrower and earlier sowing and harvesting windows occurred in a drought year (2006) compared with a normal year (2005). Differences in sowing and harvesting window lengths were 9 and 5 days, respectively; 2) different weather patterns in each agro-climatic zone were followed by different remotely sensed crop EVI seasonality profiles. Crop growth was least affected by climate variability in agro-climate region E2, which is located in the south part of study area. This study reveals new information on cropland-climate relationships across the wheat belt in NSW in a changing climate.
Please use this identifier to cite or link to this item: