Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network.
Beringer, J
Moore, CE
Cleverly, J
Campbell, DI
Cleugh, H
De Kauwe, MG
Kirschbaum, MUF
Griebel, A
Grover, S
Huete, A
Hutley, LB
Laubach, J
Van Niel, T
Arndt, SK
Bennett, AC
Cernusak, LA
Eamus, D
Ewenz, CM
Goodrich, JP
Jiang, M
Hinko-Najera, N
Isaac, P
Hobeichi, S
Knauer, J
Koerber, GR
Liddell, M
Ma, X
Macfarlane, C
McHugh, ID
Medlyn, BE
Meyer, WS
Norton, AJ
Owens, J
Pitman, A
Pendall, E
Prober, SM
Ray, RL
Restrepo-Coupe, N
Rifai, SW
Rowlings, D
Schipper, L
Silberstein, RP
Teckentrup, L
Thompson, SE
Ukkola, AM
Wall, A
Wang, Y-P
Wardlaw, TJ
Woodgate, W
- Publisher:
- Wiley
- Publication Type:
- Journal Article
- Citation:
- Glob Chang Biol, 2022
- Issue Date:
- 2022-03-22
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
The embargo period expires on 22 Mar 2023
Full metadata record
Field | Value | Language |
---|---|---|
dc.contributor.author | Beringer, J | |
dc.contributor.author | Moore, CE | |
dc.contributor.author | Cleverly, J | |
dc.contributor.author | Campbell, DI | |
dc.contributor.author | Cleugh, H | |
dc.contributor.author | De Kauwe, MG | |
dc.contributor.author | Kirschbaum, MUF | |
dc.contributor.author | Griebel, A | |
dc.contributor.author | Grover, S | |
dc.contributor.author |
Huete, A https://orcid.org/0000-0003-2809-2376 |
|
dc.contributor.author | Hutley, LB | |
dc.contributor.author | Laubach, J | |
dc.contributor.author | Van Niel, T | |
dc.contributor.author | Arndt, SK | |
dc.contributor.author | Bennett, AC | |
dc.contributor.author | Cernusak, LA | |
dc.contributor.author | Eamus, D | |
dc.contributor.author | Ewenz, CM | |
dc.contributor.author | Goodrich, JP | |
dc.contributor.author | Jiang, M | |
dc.contributor.author | Hinko-Najera, N | |
dc.contributor.author | Isaac, P | |
dc.contributor.author | Hobeichi, S | |
dc.contributor.author | Knauer, J | |
dc.contributor.author | Koerber, GR | |
dc.contributor.author | Liddell, M | |
dc.contributor.author | Ma, X | |
dc.contributor.author | Macfarlane, C | |
dc.contributor.author | McHugh, ID | |
dc.contributor.author | Medlyn, BE | |
dc.contributor.author | Meyer, WS | |
dc.contributor.author | Norton, AJ | |
dc.contributor.author | Owens, J | |
dc.contributor.author | Pitman, A | |
dc.contributor.author | Pendall, E | |
dc.contributor.author | Prober, SM | |
dc.contributor.author | Ray, RL | |
dc.contributor.author | Restrepo-Coupe, N | |
dc.contributor.author | Rifai, SW | |
dc.contributor.author | Rowlings, D | |
dc.contributor.author | Schipper, L | |
dc.contributor.author | Silberstein, RP | |
dc.contributor.author | Teckentrup, L | |
dc.contributor.author | Thompson, SE | |
dc.contributor.author | Ukkola, AM | |
dc.contributor.author | Wall, A | |
dc.contributor.author | Wang, Y-P | |
dc.contributor.author | Wardlaw, TJ | |
dc.contributor.author | Woodgate, W | |
dc.date.accessioned | 2022-03-30T06:35:03Z | |
dc.date.available | 2022-02-08 | |
dc.date.available | 2022-03-30T06:35:03Z | |
dc.date.issued | 2022-03-22 | |
dc.identifier.citation | Glob Chang Biol, 2022 | |
dc.identifier.issn | 1354-1013 | |
dc.identifier.issn | 1365-2486 | |
dc.identifier.uri | http://hdl.handle.net/10453/155711 | |
dc.description.abstract | In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers. | |
dc.format | Print-Electronic | |
dc.language | eng | |
dc.publisher | Wiley | |
dc.relation | Department of Innovation, Industry, Science & Research | |
dc.relation | http://purl.org/au-research/grants/arc/CE170100023 | |
dc.relation.ispartof | Glob Chang Biol | |
dc.relation.isbasedon | 10.1111/gcb.16141 | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.subject | 05 Environmental Sciences, 06 Biological Sciences | |
dc.subject.classification | Ecology | |
dc.title | Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network. | |
dc.type | Journal Article | |
utslib.location.activity | England | |
utslib.for | 05 Environmental Sciences | |
utslib.for | 06 Biological Sciences | |
pubs.organisational-group | /University of Technology Sydney | |
pubs.organisational-group | /University of Technology Sydney/Faculty of Science | |
pubs.organisational-group | /University of Technology Sydney/Faculty of Science/School of Life Sciences | |
pubs.organisational-group | /University of Technology Sydney/Strength - CAMGIS - Centre for Advanced Modelling and Geospatial lnformation Systems | |
utslib.copyright.status | open_access | * |
utslib.copyright.embargo | 2023-03-22T00:00:00+1000Z | |
dc.date.updated | 2022-03-30T06:35:00Z | |
pubs.publication-status | Published online |
Abstract:
In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.
Please use this identifier to cite or link to this item:
Download statistics for the last 12 months
Not enough data to produce graph