High power and high capacity 3D-Structured TiO<inf>2</inf> electrodes for lithium-ion microbatteries

Publisher:
The Electrochemical Society
Publication Type:
Journal Article
Citation:
Journal of the Electrochemical Society, 2016, 163, (10), pp. A2385-A2389
Issue Date:
2016-01-01
Full metadata record
An on-chip compatible method to fabricate high energy density TiO2 thin film electrodes on 3D-structured silicon substrates was demonstrated. 3D-structured electrodes are fabricated by combining reactive ion etching (RIE) with low pressure chemical vapor deposition (LPCVD), enabling accurate control of the aspect ratio of substrates and the subsequent deposition of TiO2 thin film electrodes onto these structured substrates. The prepared 3D-TiO2 electrodes exhibit a current-dependent increase in storage capacity of a factor up to 16 as compared to conventional planar electrodes. In addition, these 3D electrodes also reveal excellent power and cycling performance. This work demonstrates that LPCVD is capable of depositing homogeneous film electrodes on highly structured substrates and the prepared 3D-electrodes also shows significant improve in storage capacity and power density.
Please use this identifier to cite or link to this item: