Active structural acoustic control using an experimentally identified radiation resistance matrix.

Publication Type:
Journal Article
J Acoust Soc Am, 2020, 147, (3), pp. 1459
Issue Date:
Full metadata record
Active structural acoustic control (ASAC) is a widely used active noise control technique that provides control of structurally radiated noise through actuation of the radiating structure. Typically, ASAC drives structural actuators to minimise a real-time measurement of the radiated sound field. However, it is often not practical to position error microphones in the radiated sound field. To overcome this limitation, a number of methods have previously been proposed. One such method utilises the radiation resistance matrix to map structural response measurements to the acoustic response and, thus, enable an estimate of the structurally radiated sound power from structural measurements alone. This has previously relied upon precise modelling of the radiating structure which, for practical structures, can lead to limitations in the accuracy of the estimate. In this paper, an ASAC strategy that utilises an experimentally identified radiation resistance matrix is presented. The robustness of both the sound power estimation and the ASAC controller to system uncertainties is investigated, and it has been shown that the proposed ASAC strategy is able to achieve effective control of the radiated sound power.
Please use this identifier to cite or link to this item: