Spontaneous parametric down-conversion in bottom-up grown lithium niobate microcubes

Publisher:
Optica Publishing Group
Publication Type:
Journal Article
Citation:
Optical Materials Express, 2022, 12, (9), pp. 3696-3704
Issue Date:
2022-09-01
Full metadata record
Nonclassical light sources are highly sought-after as they are an integral part of quantum communication and quantum computation devices. Typical sources use bulk nonlinear crystals that rely on stringent phase-matching conditions, limiting the operating wavelength and bandwidth. In this work, we demonstrate the generation of photon pairs from a freestanding lithium niobate microcube at the telecommunication wavelength of 1.56 µm through the spontaneous parametric down-conversion process. The maximum photon pair generation rate obtained from a single microcube with the size of 3.6 µm is 490 Hz, resulting in an efficiency of 20.6 GHz/Wm, which is three orders of magnitude larger than the efficiency of biphoton generation in bulk nonlinear crystals. The microcubes are synthesized through a solvothermal method, offering the possibility for scalable devices via bottom-up assembly on any substrates. Our work constitutes an important step forward in the realization of compact nonclassical light sources with a wide bandwidth for various quantum applications.
Please use this identifier to cite or link to this item: