Immunoaffinity extraction followed by enzymatic digestion for the isolation and identification of proteins employing automated μSPE reactors and mass spectrometry.

Publisher:
Springer Nature
Publication Type:
Journal Article
Citation:
Anal Bioanal Chem, 2022, pp. 1-12
Issue Date:
2022-11-12
Full metadata record
This work describes a novel automated and rapid method for bottom-up proteomics combining protein isolation with a micro-immobilised enzyme reactor (IMER). Crosslinking chemistry based on 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling was exploited to immobilise trypsin and antibodies onto customisable silica particles coated with carboxymethylated dextran (CMD). This novel silica-CMD solid-phase extraction material was characterised using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conductometric titrations and enzymatic colorimetric assays. Micro-solid-phase extraction (μSPE) cartridges equipped with the modified CMD material were employed and integrated into an automated and repeatable workflow using a sample preparation workstation to achieve rapid and repeatable protein isolation and pre-concentration, followed by tryptic digestion producing peptide fragments that were identified by liquid chromatography mass spectrometry (LC-MS).
Please use this identifier to cite or link to this item: