Research on Impact Attenuation Characteristics of Greyhound Racing Track Padding for Injury Prevention

Publication Type:
Journal Article
Vibration, 2022, 5, (3), pp. 497-512
Issue Date:
Full metadata record
To reduce injuries to greyhounds caused by collisions with fixed racing track objects such as the outside fence or the catching pen structures, padding systems are widely adopted. However, there are currently neither recognised standards nor minimum performance thresholds for greyhound industry padding systems. This research is the first of its kind to investigate the impact attenuation characteristics of different padding systems for use within the greyhound racing industry for the enhanced safety and welfare of racing greyhounds. A standard head injury criterion (HIC) meter was used to examine padding impact attenuation performance based on the maximum g-force, HIC level and the HIC duration. Initially, greyhound racing speed was recorded and analysed with the IsoLynx system to understand the potential impact hazard to greyhounds during racing which indicates the necessity for injury prevention with padding. A laboratory test was subsequently conducted to compare the impact attenuation performance of different kinds of padding. Since padding impact attenuation characteristics are also affected by the installation and substrate, onsite testing was conducted to obtain the padding system impact attenuation performance in actual greyhound racing track applications. The test results confirm that the padding currently used within the greyhound industry is adequate for the fence but inadequate when used for rigid structural members such as the catching pen gate supports. Thus, increasing the padding thickness is strongly recommended if it is used at such locations. More importantly, it is also recommended that, after the installation of padding on the track, its impact attenuation characteristics be tested according to the methodology developed herein to verify the suitability for protecting greyhounds from injury.
Please use this identifier to cite or link to this item: