The apparent optical indices of spongy nanoporous gold

Australian Institute of Physics
Publication Type:
Conference Proceeding
Proceedings of the 16th National Congress of the Australian Institute of Physics, 2005, pp. 177 - 180
Issue Date:
Full metadata record
Very thin spongy nanoporous gold films have a unique nanostructure and hence unusual properties. Our interest in these materials is also due to their wide range of potential application (1,2). An optical study for such nanostructured films is of fundamental interest for understanding how light interacts with such a spongy nanoporous structure. In general the gold either percolates or is very closely packed. This surface plasmons, and surface plasmon resonant effects, are expected to play a key role given the large surface area of metal and the metal backbone of the nanostructure. The ropological complexity of the nano-void network is also expected to be a major influence. The optical response has, for a metal system, quite unusual dispersion relations for the effective complex refractive index components n*, k*. Once these are better understood new optical engineering possibilities arise. We are not aware of any optical studies for spongy metal film nanostructures apart from a brief preliminary report of our own on one such film 93) whose nanstructure was different to the spongy nanoporous films presented here. We check the internal consistency and physical accpetability of the results with a Kramers-Kronig analysis of the spectrumn of n*, k* values, because of their unusual spectral character.
Please use this identifier to cite or link to this item: