Tunable terahertz filter/antenna-sensor using graphene-based metamaterials

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Materials and Design, 2022, 220, pp. 110855
Issue Date:
2022-08-01
Full metadata record
In this paper, a novel tunable graphene-based bandstop filter/antenna-sensor is presented. This structure is an integrated module that can be used to combine filtering and high-gain radiation performance. The initial design of the unit cell consists of four U-shaped stubs loaded, resembling the arms of a ring and a sensing layer in the substrate. The reflection and transmission spectra are obtained for various graphene's chemical potentials and refractive index of sensing layer (Ns) of structure in the range of 1.3–1.6 THz. The proposed structure exhibits the attributes of both dual-band filter and single-band antenna-sensor. The conductivity of graphene and its structural parameters are studied to optimize the component performance. In filtering mode, the first bandstop is from 1.23 to 1.6 THz equal to 26% of fractional bandwidth (FBW) at 1.415 THz. The second stopband is centered at 3.12 THz with FBW of 14% for Ns = 1.6 and 0.6 eV chemical potential. In the antenna mode, a single band of the antenna-sensor is centered at 1.95 THz for the same Ns and same chemical potential. It is shown that a sensitivity of 0.145 THz/RIU is achieved at Ns = 1.5 and chemical potential of 0.6 eV. Additionally, the performance of the proposed filter/antenna-sensor module is investigated for different wave polarizations and oblique angles.
Please use this identifier to cite or link to this item: