Random mutagenesis of Phaeodactylum tricornutum using ultraviolet, chemical, and X-radiation demonstrates the need for temporal analysis of phenotype stability.

Publisher:
Springer Science and Business Media LLC
Publication Type:
Journal Article
Citation:
Sci Rep, 2023, 13, (1), pp. 22385
Issue Date:
2023-12-16
Full metadata record
We investigated two non-ionising mutagens in the form of ultraviolet radiation (UV) and ethyl methanosulfonate (EMS) and an ionising mutagen (X-ray) as methods to increase fucoxanthin content in the model diatom Phaeodactylum tricornutum. We implemented an ultra-high throughput method using fluorescence-activated cell sorting (FACS) and live culture spectral deconvolution for isolation and screening of potential pigment mutants, and assessed phenotype stability by measuring pigment content over 6 months using high-performance liquid chromatography (HPLC) to investigate the viability of long-term mutants. Both UV and EMS resulted in significantly higher fucoxanthin within the 6 month period after treatment, likely as a result of phenotype instability. A maximum fucoxanthin content of 135 ± 10% wild-type found in the EMS strain, a 35% increase. We found mutants generated using all methods underwent reversion to the wild-type phenotype within a 6 month time period. X-ray treatments produced a consistently unstable phenotype even at the maximum treatment of 1000 Grays, while a UV mutant and an EMS mutant reverted to wild-type after 4 months and 6 months, respectively, despite showing previously higher fucoxanthin than wild-type. This work provides new insights into key areas of microalgal biotechnology, by (i) demonstrating the use of an ionising mutagen (X-ray) on a biotechnologically relevant microalga, and by (ii) introducing temporal analysis of mutants which has substantial implications for strain creation and utility for industrial applications.
Please use this identifier to cite or link to this item: