Native Function of the Bacterial Ion Channel SthK in a Sparsely Tethered Lipid Bilayer Membrane Architecture.
Andersson, J
Kleinheinz, D
Ramach, U
Kiesenhofer, N
Ashenden, A
Valtiner, M
Holt, S
Koeper, I
Schmidpeter, PAM
Knoll, W
- Publisher:
- AMER CHEMICAL SOC
- Publication Type:
- Journal Article
- Citation:
- J Phys Chem B, 2023, 127, (16), pp. 3641-3650
- Issue Date:
- 2023-04-27
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
Native Function of the Bacterial Ion Channel SthK in a Sparsely Tethered Lipid Bilayer Membrane Architecture.pdf | Published version | 4.61 MB | Adobe PDF |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
Full metadata record
Field | Value | Language |
---|---|---|
dc.contributor.author | Andersson, J | |
dc.contributor.author | Kleinheinz, D | |
dc.contributor.author | Ramach, U | |
dc.contributor.author | Kiesenhofer, N | |
dc.contributor.author | Ashenden, A | |
dc.contributor.author | Valtiner, M | |
dc.contributor.author |
Holt, S https://orcid.org/0000-0003-3189-8047 |
|
dc.contributor.author | Koeper, I | |
dc.contributor.author | Schmidpeter, PAM | |
dc.contributor.author | Knoll, W | |
dc.date.accessioned | 2024-01-25T06:10:25Z | |
dc.date.available | 2024-01-25T06:10:25Z | |
dc.date.issued | 2023-04-27 | |
dc.identifier.citation | J Phys Chem B, 2023, 127, (16), pp. 3641-3650 | |
dc.identifier.issn | 1520-6106 | |
dc.identifier.issn | 1520-5207 | |
dc.identifier.uri | http://hdl.handle.net/10453/174957 | |
dc.description.abstract | The plasma membrane protects the interiors of cells from their surroundings and also plays a critical role in communication, sensing, and nutrient import. As a result, the cell membrane and its constituents are among the most important drug targets. Studying the cell membrane and the processes it facilitates is therefore crucial, but it is a highly complex environment that is difficult to access experimentally. Various model membrane systems have been developed to provide an environment in which membrane proteins can be studied in isolation. Among them, tethered bilayer lipid membranes (tBLMs) are a promising model system providing a solvent-free membrane environment which can be prepared by self-assembly, is resistant to mechanical disturbances and has a high electrical resistance. tBLMs are therefore uniquely suitable to study ion channels and charge transport processes. However, ion channels are often large, complex, multimeric structures and their function requires a particular lipid environment. In this paper, we show that SthK, a bacterial cyclic nucleotide gated (CNG) ion channel that is strongly dependent on the surrounding lipid composition, functions normally when embedded into a sparsely tethered lipid bilayer. As SthK has been very well characterized in terms of structure and function, it is well-suited to demonstrate the utility of tethered membrane systems. A model membrane system suitable for studying CNG ion channels would be useful, as this type of ion channel performs a wide range of physiological functions in bacteria, plants, and mammals and is therefore of fundamental scientific interest as well as being highly relevant to medicine. | |
dc.format | Print-Electronic | |
dc.language | eng | |
dc.publisher | AMER CHEMICAL SOC | |
dc.relation.ispartof | J Phys Chem B | |
dc.relation.isbasedon | 10.1021/acs.jpcb.2c07252 | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | 02 Physical Sciences, 03 Chemical Sciences, 09 Engineering | |
dc.subject.classification | 34 Chemical sciences | |
dc.subject.classification | 40 Engineering | |
dc.subject.classification | 51 Physical sciences | |
dc.subject.mesh | Electrochemical Techniques | |
dc.subject.mesh | Ion Channels | |
dc.subject.mesh | Lipid Bilayers | |
dc.subject.mesh | Microscopy, Atomic Force | |
dc.subject.mesh | Cyclic AMP | |
dc.subject.mesh | Bacteria | |
dc.subject.mesh | Bacterial Proteins | |
dc.subject.mesh | Bacteria | |
dc.subject.mesh | Lipid Bilayers | |
dc.subject.mesh | Bacterial Proteins | |
dc.subject.mesh | Ion Channels | |
dc.subject.mesh | Cyclic AMP | |
dc.subject.mesh | Microscopy, Atomic Force | |
dc.subject.mesh | Electrochemical Techniques | |
dc.subject.mesh | Electrochemical Techniques | |
dc.subject.mesh | Ion Channels | |
dc.subject.mesh | Lipid Bilayers | |
dc.subject.mesh | Microscopy, Atomic Force | |
dc.subject.mesh | Cyclic AMP | |
dc.subject.mesh | Bacteria | |
dc.subject.mesh | Bacterial Proteins | |
dc.title | Native Function of the Bacterial Ion Channel SthK in a Sparsely Tethered Lipid Bilayer Membrane Architecture. | |
dc.type | Journal Article | |
utslib.citation.volume | 127 | |
utslib.location.activity | United States | |
utslib.for | 02 Physical Sciences | |
utslib.for | 03 Chemical Sciences | |
utslib.for | 09 Engineering | |
pubs.organisational-group | University of Technology Sydney | |
pubs.organisational-group | University of Technology Sydney/Faculty of Science | |
pubs.organisational-group | University of Technology Sydney/Faculty of Science/School of Life Sciences | |
utslib.copyright.status | closed_access | * |
dc.date.updated | 2024-01-25T06:10:18Z | |
pubs.issue | 16 | |
pubs.publication-status | Published | |
pubs.volume | 127 | |
utslib.citation.issue | 16 |
Abstract:
The plasma membrane protects the interiors of cells from their surroundings and also plays a critical role in communication, sensing, and nutrient import. As a result, the cell membrane and its constituents are among the most important drug targets. Studying the cell membrane and the processes it facilitates is therefore crucial, but it is a highly complex environment that is difficult to access experimentally. Various model membrane systems have been developed to provide an environment in which membrane proteins can be studied in isolation. Among them, tethered bilayer lipid membranes (tBLMs) are a promising model system providing a solvent-free membrane environment which can be prepared by self-assembly, is resistant to mechanical disturbances and has a high electrical resistance. tBLMs are therefore uniquely suitable to study ion channels and charge transport processes. However, ion channels are often large, complex, multimeric structures and their function requires a particular lipid environment. In this paper, we show that SthK, a bacterial cyclic nucleotide gated (CNG) ion channel that is strongly dependent on the surrounding lipid composition, functions normally when embedded into a sparsely tethered lipid bilayer. As SthK has been very well characterized in terms of structure and function, it is well-suited to demonstrate the utility of tethered membrane systems. A model membrane system suitable for studying CNG ion channels would be useful, as this type of ion channel performs a wide range of physiological functions in bacteria, plants, and mammals and is therefore of fundamental scientific interest as well as being highly relevant to medicine.
Please use this identifier to cite or link to this item:
Download statistics for the last 12 months
Not enough data to produce graph