Functional regression via variational bayes

Publication Type:
Journal Article
Electronic Journal of Statistics, 2011, 5 pp. 572 - 602
Issue Date:
Full metadata record
We introduce variational Bayes methods for fast approximate inference in functional regression analysis. Both the standard cross-sectional and the increasingly common longitudinal settings are treated. The method- ology allows Bayesian functional regression analyses to be conducted with- out the computational overhead of Monte Carlo methods. Confidence in- tervals of the model parameters are obtained both using the approximate variational approach and nonparametric resampling of clusters. The latter approach is possible because our variational Bayes functional regression ap- proach is computationally efficient. A simulation study indicates that varia- tional Bayes is highly accurate in estimating the parameters of interest and in approximating the Markov chain Monte Carlo-sampled joint posterior distribution of the model parameters. The methods apply generally, but are motivated by a longitudinal neuroimaging study of multiple sclerosis patients. Code used in simulations is made available as a web-supplement.
Please use this identifier to cite or link to this item: