Asymptotics for general multivariate kernel density derivative estimators

Academia Sinica
Publication Type:
Journal Article
Statistica Sinica, 2011, 21 pp. 807 - 840
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010000117OK.pdf995.76 kB
Adobe PDF
We investigate kernel estimators of multivariate density derivative functions using general (or unconstrained) bandwidth matrix selectors. These density derivative estimators have been relatively less well researched than their density estimator analogues. A major obstacle for progress has been the intractability of the matrix analysis when treating higher order multivariate derivatives. With an alternative vectorization of these higher order derivatives, mathematical intractabilities are surmounted in an elegant and unified framework. The finite sample and asymptotic analysis of squared errors for density estimators are generalized to density derivative estimators. Moreover, we are able to exhibit a closed form expression for a normal scale bandwidth matrix for density derivative estimators. These normal scale bandwidths are employed in a numerical study to demonstrate the gain in performance of unconstrained selectors over their constrained counterparts.
Please use this identifier to cite or link to this item: