An elementary approach to optimal stopping problems for AR(1) sequences

Publication Type:
Journal Article
Sequential Analysis, 2011, 30 (1), pp. 79 - 93
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010001569OK.pdf148.74 kB
Adobe PDF
Optimal stopping problems form a class of stochastic optimization problems that has a wide range of applications in sequential statistics and mathematical finance. Here we consider a general optimal stopping problem with discounting for autoregressive processes. Our strategy for a solution consists of two steps: First we give elementary conditions to ensure that an optimal stopping time is of threshold type. Then the resulting one-dimensional problem of finding the optimal threshold is to be solved explicitly. The second step is carried out for the case of exponentially distributed innovations. © Taylor & Francis Group, LLC.
Please use this identifier to cite or link to this item: