Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter

Publication Type:
Journal Article
Journal of Physical Chemistry A, 2012, 116 (11), pp. 3004 - 3013
Issue Date:
Filename Description Size
Thumbnail2011001406OK.pdf3.31 MB
Adobe PDF
Full metadata record
ABC transporters couple ATP hydrolysis to movement of substrates across cell membranes. They comprise two transmembrane domains and two cytosolic nucleotide-binding domains forming two active sites that hydrolyze ATP cooperatively. The mechanism of ATP hydrolysis is controversial and the structural dynamic basis of its allosteric control unknown. Here we report molecular dynamics simulations of the ATP/apo and ATP/ADP states of the bacterial ABC exporter Sav1866, in which the cytoplasmic region of the protein was simulated in explicit water for 150 ns. In the simulation of the ATP/apo state, we observed, for the first time, conformers of the active site with the canonical geometry for an in-line nucleophilic attack on the ATP γ-phosphate. The conserved glutamate immediately downstream of the Walker B motif is the catalytic base, forming a dyad with the H-loop histidine, whereas the Q-loop glutamine has an organizing role. Each D-loop provides a coordinating residue of the attacking water, and comparison with the simulation of the ATP/ADP state suggests that via their flexibility, the D-loops modulate formation of the hydrolysis-competent state. A global switch involving a coupling helix delineates the signal transmission route by which allosteric control of ATP hydrolysis in ABC transporters is mediated. © 2012 American Chemical Society.
Please use this identifier to cite or link to this item: