Aqueous pathways for the formation of zinc oxide nanoparticles
- Publication Type:
- Journal Article
- Citation:
- Dalton Transactions, 2011, 40 (18), pp. 4871 - 4878
- Issue Date:
- 2011-05-14
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
We examine the effect of reactant concentrations, temperatures and feeding methods on the morphology of ZnO formed when reacting solutions of ZnSO 4 and NaOH. The catalytic effect of hydroxide in excess relative to the stoichiometric ratio is considered. It is shown that, having fixed other reaction conditions, the end-products, particle structures and size strongly depend on the mole ratio of the precursors. The presence of zinc salt hydroxide species was confirmed at sub-stoichiometric ratios in slightly acidic conditions. At the stoichiometric ratio both zinc hydroxide and zinc oxide are formed, while only zinc oxide forms in an excess of hydroxide. The method of feeding the reactants into the reaction vessel also has a strong influence on the end-product properties, as does the reaction temperature. By control of these parameters the specific surface area could be varied from 10 to 33 m 2 g-1, the particle shape could be varied from equiaxed, through to star-like and needle-like, and the particle size may be varied from 50 to over 300 nm. © 2011 The Royal Society of Chemistry.
Please use this identifier to cite or link to this item: