Fine root biomass and its relationship to evapotranspiration in woody and grassy vegetation covers for ecological restoration of waste storage and mining landscapes

Publisher:
Springer New York
Publication Type:
Journal Article
Citation:
Ecosystems, 2012, 15 (1), pp. 113 - 127
Issue Date:
2012-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010005693.pdf348.94 kB
Adobe PDF
Production and distribution of fine roots (<= 2.0 mm diameter) are central to belowground ecological processes. This is especially true where vegetation serves as a pump to prevent saturation of soil and possible drainage of excess water into or from potentially toxic waste material stored underground or in mounds aboveground. In this study undertaken near Sydney in Australia, we determined fine root biomass and evapotranspiration (ET) on a waste disposal site restored with either a 15-year-old grass sward or plantations of mixed woody species that were either 5 years old (plantation-5) with a vigorous groundcover of pasture legumes and grasses, or 3 years old (plantation-3) with sparse groundcover. These sites were compared with nearby remnant woodland; all four were located within 0.5-km radius at the same site. Ranking of fine root biomass was in the order woodland (12.3 Mg ha(-1)) > plantation-5 (8.3 Mg ha(-1)) > grass (4.9 Mg ha(-1)) > plantation-3 (1.2 Mg ha(-1)) and was not correlated with nutrient contents in soil or plants, but reflected the form and age of the vegetation covers. Trends in root length density (RLD) and root area index (RAI) followed those in root biomass, but the differences in RAI were larger than those in biomass amongst the vegetation covers. Annual ET in the dry year of 2009 was similar in the three woody vegetation covers (652-683 mm) and was at least 15% larger than for the grass (555 mm), which experienced restrained growth in winter and periodic mowing. This resulted in drainage from the grass cover while there was no drainage from any of the woody vegetation covers.
Please use this identifier to cite or link to this item: