Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti0.87 O2 Nanosheet Membranes for Ultrahigh-performance Osmotic Power Generation.
- Publisher:
- WILEY-V C H VERLAG GMBH
- Publication Type:
- Journal Article
- Citation:
- Angew Chem Int Ed Engl, 2024, 63, (4), pp. e202315947
- Issue Date:
- 2024-01-22
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade-off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom-scale confinement (DAC) to design ion-permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC-Ti0.87 O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC-Ti0.87 O2 membranes achieved an ultrahigh power density of 17.8 W m-2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m-2 with a 500-fold salinity gradient, far exceeding all the reported macroscopic-scale membranes. This work highlights the potential of the construction of DAC ion-permselective channels for two-dimensional materials in high-performance nanofluidic energy systems.
Please use this identifier to cite or link to this item: