Contrasting regulation of leaf gas exchange of semi-arid tree species under repeated drought.
- Publisher:
- OXFORD UNIV PRESS
- Publication Type:
- Journal Article
- Citation:
- Tree Physiol, 2024, 44, (10), pp. tpae121
- Issue Date:
- 2024-10-03
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Predicting how plants respond to drought requires an understanding of how physiological mechanisms and drought response strategies occur, as these strategies underlie rates of gas exchange and productivity. We assessed the response of 11 plant traits to repeated experimental droughts in four co-occurring species of central Australia. The main goals of this study were to: (i) compare the response to drought between species; (ii) evaluate whether plants acclimated to repeated drought; and (iii) examine the degree of recovery in leaf gas exchange after cessation of drought. Our four species of study were two tree species and two shrub species, which field studies have shown to occupy different ecohydrological niches. The two tree species (Eucalyptus camaldulensis Dehnh. and Corymbia opaca (D.J.Carr & S.G.M.Carr) K.D.Hill & L.A.S.Johnson) had large reductions in stomatal conductance (gs) values, declining by 90% in the second drought. By contrast, the shrub species (Acacia aptaneura Maslin & J.E.Reid and Hakea macrocarpa A.Cunn. ex R.Br.) had smaller reductions gs in the second drought of 52 and 65%, respectively. Only A. aptaneura showed a physiological acclimatation to drought due to small declines in gs versus ᴪpd (0.08 slope) during repeated droughts, meaning they maintained higher rates of gs compared with plants that only experienced one final drought (0.19 slope). All species in all treatments rapidly recovered leaf gas exchange and leaf mass per area following drought, displaying physiological plasticity to drought exposure. This research refines our understanding of plant physiological responses to recurrent water stress, which has implications for modelling of vegetation, carbon assimilation and water use in semi-arid environments under drought.
Please use this identifier to cite or link to this item: