Comparative Effects Of Azimilide And Ambasilide On The Human Ether-a-go-go-related Gene (herg) Potassium Channel

Elsevier Science Bv
Publication Type:
Journal Article
Cardiovascular Research, 2000, 48 (1), pp. 44 - 58
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2006014412OK.pdf627.29 kB
Adobe PDF
Objective: To evaluate the effects of azimilide and ambasilide on the biophysical properties of the human-ether-a-go-go-related (HERC) channel. Methods: HERG was stably transfected into Chinese hamster ovary (CHO-K1) cells and currents were measured using a whole cell, voltage-clamp technique. Results: Azimilide had a 'dual effect', inhibiting current at voltage steps above -40 mV and augmenting current at -40 and -50 mV. Tail current inhibition following a step to +30 mV did not vary with temperature (IC50 610 nM at 22 degrees C and 560 nM at 37 degrees C). The agonist effect at -50 mV was concentration-dependent and correlated with a hyperpolarizing shift in the V-1/2 of activation (r = 0.98, P < 0.05). Time constants of inactivation were faster and there was a -10 mV shift in the V-1/2 of steady state inactivation suggestive of open and inactivated state binding. By comparison, ambasilide inhibited HERG channels with lower potency (IC50 3.6 mu M), in a voltage- and time-dependent but frequency-independent manner (0.03-1 Hz). Ambasilide had no effect on activation or inactivation gating but prolonged both fast and slow components of deactivation consistent with unbinding from the open state. The net effect of both drugs was similar during a voltage ramp which simulated a cardiac action potential. Conclusions: Inhibition of HERG channels by azimilide and ambasilide exhibits a similar time and voltage-dependence. While both exhibit affinity for the open state, azimilide also binds to inactivated channels.
Please use this identifier to cite or link to this item: