High capacity cathode materials for Li-S batteries

Publication Type:
Journal Article
Journal of Materials Chemistry A, 2013, 1 (5), pp. 1573 - 1578
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2012000568OK.pdf1.57 MB
Adobe PDF
To enhance the stability of sulfur cathode for a high energy lithium-sulfur battery, sulfur-activated carbon (S-AC) composite was prepared by encapsulating sulfur into micropores of activated carbon using a solution-based processing technique. In the analysis using the prepared specimen of S-AC composite by the focused ion beam (FIB) technique, the elemental sulfur exists in a highly dispersed state inside the micropores of activated carbon, which has a large surface area and a narrow pore distribution. The S-AC composite was characterized through X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) method, selected area electron diffraction (SAED), energy dispersive X-ray spectrometry (EDX), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and field emission scanning electron microscopy (FESEM). A lithium-sulfur cell using the S-AC composite has a high first discharge capacity over 800 mA h g-1S even at a high current density such as 2C (3200 mA g-1S) and has good cycleability around 500 mA h g-1S discharge capacity at the 50thcycle at the same current density. © 2013 The Royal Society of Chemistry.
Please use this identifier to cite or link to this item: