Quantitative risk assessment for developmental toxicity

Publisher:
Wiley-Blackwell Publishing Ltd.
Publication Type:
Journal Article
Citation:
Biometrics, 1992, 48 pp. 163 - 174
Issue Date:
1992-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2012000096OK.pdf1.08 MB
Adobe PDF
Pharmaceutical companies and governmental regulatory agencies are becoming increasingly aware of the need for improved statistical methods for developmental toxicity experiments. Although a number of statisticians have become interested in this area, activity has centered mostly on the development of methods to analyze binary outcomes, such as malformations among live pups, while accounting appropriately for the correlation induced by the litter effect. In contrast, the topic of quantitative risk assessment has received relatively little attention. This paper addresses the specific question of how to assess risk appropriately when exposure causes a variety of adverse effects, including resorption and fetal death, in addition to malformations. It will be seen that risk assessments based on a single developmental outcome, such as malformation, may be conservative. A method is proposed for estimating an exposure level at which the overall risk of any adverse effect is acceptably low. The method is based on a continuation ratio formulation of a multinomial distribution, with an additional scale parameter to account for overdispersion. Comparisons are made with binary models on prenatal death and malformation, as well as a binary model that makes no distinction between death and malformation, but simply classifies each fetus as normal or abnormal. Data from several developmental toxicity studies illustrate the results and findings.
Please use this identifier to cite or link to this item: