Formation of assemblies on cell membranes by secreted proteins: Molecular studies of free λ light chain aggregates found on the surface of myeloma cells

Publication Type:
Journal Article
Citation:
Biochemical Journal, 2013, 454 (3), pp. 479 - 489
Issue Date:
2013-09-15
Filename Description Size
Thumbnail2012006640OK.pdf1.63 MB
Adobe PDF
Full metadata record
We have described the presence of cell-membrane-associated κFLCs (free immunoglobulin light chains) on the surface of myeloma cells. Notably, the anti-κFLC mAb (monoclonal antibody) MDX-1097 is being assessed in clinical trials as a therapy for κ light chain isotype multiple myeloma. Despite the clinical potential of anti-FLC mAbs, there have been limited studies on characterizing membrane-associated FLCs at a molecular level. Furthermore, it is not known whether λFLCs can associate with cell membranes of myeloma cells. In the present paper, we describe the presence of λFLCs on the surface of myeloma cells. We found that cell-surface-associated λFLCs are bound directly to the membrane and in an aggregated form. Subsequently, membrane interaction studies revealed that λFLCs interact with saturated zwitterionic lipids such as phosphatidylcholine and phosphatidylethanolamine, and using automated docking, we characterize a potential recognition site for these lipids. Atomic force microscopy confirmed that membrane-associated λFLCs are aggregated. Given the present findings, we propose a model whereby individual FLCs show modest affinity for zwitterionic lipids, with aggregation stabilizing the interaction due to multivalency. Notably, this is the first study to image FLCs bound to phospholipids and provides important insights into the possible mechanisms of membrane association by this unique myeloma surface antigen. © 2013 Biochemical Society.
Please use this identifier to cite or link to this item: