Microsatellite primer development for the seagrass Zostera nigricaulis (Zosteraceae)

Publisher:
Springer
Publication Type:
Journal Article
Citation:
Conservation Genetics Resources, 2013, 5 (3), pp. 607 - 610
Issue Date:
2013-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2012006542OK.pdf166.35 kB
Adobe PDF
Seagrasses are marine angiosperms with a worldwide distribution that form conspicuous beds in nearshore habitats. Despite being universally recognised as a foundation species that performs a number of important ecosystems functions (incl. sediment stabilisation, facilitation of biodiversity, nutrient cycling and carbon sequestration), global seagrass habitats are in decline. Resiliencethe ability to recover from disturbance without switching to an alternative stateis paramount to the maintenance and persistence of seagrass habitats. Genetic diversity is a key component of seagrass resilience and contributes to an understanding of population structure, connectivity between populations, and reproductive strategies. Microsatellite primers were developed to investigate the resilience of the seagrass Zostera nigricaulis, which dominates subtidal habitats in the bays of south-eastern Australia. We also tested for cross-amplification of markers between Z. nigricaulis and previously developed markers for the sympatric species Z. muelleri to assess their applicability for use in assessing patterns of genetic diversity, population structure, and mating system. Using next-generation sequencing we isolated 11 novel microsatellite loci for Z. nigricaulis, 8 of which were polymorphic for the samples tested. Allelic diversity ranged from 1 to 8. None of the primer pairs developed for Z. nigricaulis cross-amplified in Z. muelleri; but 14 of 24 primer pairs previously developed for Z. muelleri amplified clearly in Z. nigricaulis samples with six of these showing polymorphism. The results demonstrate the applicability of the Z. nigricaulis microsatellite primers for use in the study of population genetics and limited cross-amplification with Z. muelleri.
Please use this identifier to cite or link to this item: