Discrete optimization with polynomially detectable boundaries and restricted level sets

Publication Type:
Journal Article
Journal of Combinatorial Optimization, 2013, 25 (2), pp. 308 - 325
Issue Date:
Filename Description Size
Thumbnail2012004029OK.pdf574.29 kB
Adobe PDF
Full metadata record
The paper describes an optimization procedure for a class of discrete optimization problems which is defined by certain properties of the boundary of the feasible region and level sets of the objective function. It is shown that these properties are possessed, for example, by various scheduling problems, including a number of well known NP-hard problems which play an important role in scheduling theory. For one of these problems the presented optimization procedure is compared with a version of the branch-and-bound algorithm by means of computational experiments. © 2012 Springer Science+Business Media, LLC.
Please use this identifier to cite or link to this item: