Solar-driven hydrogen production in green algae

Publisher:
Elsevier Ltd.
Publication Type:
Journal Article
Citation:
Advances in Applied Microbiology, 2011, 75 (1), pp. 71 - 110
Issue Date:
2011-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2012006890OK.pdf2.14 MB
Adobe PDF
The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H2, biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H2 production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H2 evolution and discuss possible approaches to improve H2 yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept.
Please use this identifier to cite or link to this item: