Optimisation of absorption efficiency for varying dielectric spherical nanoparticles

Publication Type:
Conference Proceeding
Citation:
Proceedings of the 2006 International Conference on Nanoscience and Nanotechnology, ICONN, 2006, pp. 556 - 559
Issue Date:
2006-12-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2006004518.pdf248.03 kB
Adobe PDF
In this paper we compare the optical absorption for nanospheres made from a range of transition and alkali metals from Li (A=3) to Au (A=79). Numerical solutions to Mie theory were used to calculate the absorption efficiency, Q abs, for nanospheres varying in radii between 5 nm and 100 nm in vacuum. We show that, although gold is the most commonly used nanoparticle material, its absorption efficiency at the plasmon resonance is not as strong as materials such as the alkali metals. Of all the materials tried, potassium spheres with a radius of 21 nm have an optimum absorption efficiency of 14.7. In addition we also show that, unlike gold, the wavelength of the plasmon peak in other materials is sensitive to the sphere radius. In potassium the peak position shifts by 100 nm for spheres ranging from 5 nm to 65 nm, the shift is less than 10 nm for gold spheres. © 2006 IEEE.
Please use this identifier to cite or link to this item: