Effect of the light regime and phototrophic conditions on growth of the H2-producing green alga Chlamydomonas reinhardtii

Publisher:
Elsevier Ltd.
Publication Type:
Journal Article
Citation:
Energy Procedia, 2012, 29 pp. 710 - 719
Issue Date:
2012-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2012006886OK.pdf1 MB
Adobe PDF
Development of the capacity to produce hydrogen economically from renewable energy resources is of critical importance to the future viability of that fuel. The inexpensive and widely available green alga Chlamydomonas reinhardtii has the ability to photosynthetically synthesise molecular hydrogen. Green algal hydrogen production does not generate any toxic or polluting bi-products and could potentially offer value-added products derived from algal biomass. The growth of dense and healthy algal biomass is a vital requirement for efficient hydrogen production. Algal cell density is principally limited by the illumination conditions of the algal culture and by the availability of key nutrients, including the sources of carbon, nitrogen, sulphur and phosphorus. In this study, the effect of different light regimes and carbon dioxide feeds on Chlamydomonas reinhardtii growth were investigated. The objective was to increasing the algal growth rate and the cell density, leading to enhanced biohydrogen production. State-of-the art photobioreactors were used to grow algal cultures, and to measure the pH and optical density of those cultures. Under mixotrophic growth conditions, using both acetate and carbon dioxide, increasing the carbon dioxide feed rate increased the optical density of the culture but reduced the growth rate. Under autotrophic growth conditions, with carbon dioxide as the only carbon source, a carbon dioxide feed with a partial pressure of circa 11% was determined to optimise both the algal growth rate and the optical density.
Please use this identifier to cite or link to this item: