Polar auxin transport in relation to long-distance transport of nutrients in the Charales

Publisher:
Oxford University Press
Publication Type:
Journal Article
Citation:
Journal Of Experimental Botany, 2013, 64 (1), pp. 1 - 9
Issue Date:
2013-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2012000029OK.pdfPublished Version1.52 MB
Adobe PDF
This paper examines the significance of the recent demonstration of polar auxin transport (PAT) in the green macroalga Chara (Charophyceae: Charales) and, especially, options for explaining some features of PAT in the Charales. The occurrence of PAT in the Charales shows that PAT originated in the algal ancestors of the embryophytes (liverworts, mosses, hornworts, and vascular plants), although it is not yet known if PAT occurs elsewhere in the Charophyceae or in other algae. While in the embryophytes PAT occurs in parenchymatously constructed structures which commonly also have xylem and phloem (or their bryophyte analogues) as long-distance transport processes in parallel to PAT, in Chara corallina PAT shares the pathway for long-distance transport of nutrients though the parenchymatously constructed nodal complexes and the single giant cells of the internode. The speed of auxin movement of PAT is much more rapid than that attributable to diffusion and of the same order as the rate of cytoplasmic streaming in the giant internodal cells, yet complete inhibition of streaming by the inhibitor cytochalasin H does not slow down auxin transport. Explanations for this phenomenon are sought in the operation of other mechanochemical motors, dyneinâtubulin and kinesinâtubulin, as alternatives to the myosinâactin system which powers cytoplasmic streaming. Experiments in which microtubules are disrupted, for example by colchicine, could show if one of the tubulin-based motors is involved. If these motors are involved, some mechanism is needed to amplify the speeds known for the motors to explain the order of magnitude higher speeds seen for auxin transport.
Please use this identifier to cite or link to this item: