Quantifying climate and management effects on regional crop yield and nitrogen leaching in the North China Plain

Publisher:
ASA, CSSA, and SSSA
Publication Type:
Journal Article
Citation:
Journal of Environmental Quality, 2013, 42 (5), pp. 1466 - 1479
Issue Date:
2013-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2012006822OK.pdfPublished Version717.32 kB
Adobe PDF
Better water and nitrogen (N) management requires better understanding of soil water and N balances and their effects on crop yield under various climate and soil conditions. In this study, the calibrated Root Zone Water Quality Model (RZWQM2) was used to assess crop yield and N leaching under current and alternative management practices in a double-cropped wheat (Triticum aestivum L.) and maize (Zea mays L.) system under longterm weather conditions (19702009) for dominant soil types at 15 locations in the North China Plain. The results provided quantitative long-term variation of deep seepage and N leaching at these locations, which strengthened the existing qualitative knowledge for site-specific management of water and N. In general, the current management practices showed high residual soil N and N leaching in the region, with the amounts varying between crops and from location to location and from year to year. Seasonal rainfall explained 39 to 84% of the variability in N leaching (19702009) in maize across locations, while for wheat, its relationship with N leaching was significant (P < 0.01) only at five locations. When N and/or irrigation inputs were reduced to 40 to 80% of their current levels, N leaching generally responded more to N rate than to irrigation, while the reverse was true for crop yield at most locations. Matching N input with crop requirements under limited water conditions helped achieve lower N leaching without considerable soil N accumulation. Based on the long-term simulation results and water resources availability in the region, it is recommended to irrigate at 60 to 80% of the current water levels and fertilize only at 40 to 60% of the current N rate to minimizing N leaching without compromising crop yield.
Please use this identifier to cite or link to this item: