Carrier dynamics in Si nanocrystals in an SiO<inf>2</inf> matrix investigated by transient light absorption

Publication Type:
Journal Article
Citation:
Physical Review B - Condensed Matter and Materials Physics, 2013, 88 (15)
Issue Date:
2013-10-08
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
ThumbnailPhysRevB.88.155304.pdfPublished Version399.87 kB
Adobe PDF
We report on investigations of optical carrier generation in silicon nanocrystals embedded in an SiO2 matrix. Carrier relaxation and recombination processes are monitored by means of time-resolved induced absorption, using a conventional femtosecond pump-probe setup for samples containing different average sizes of nanocrystals (dNC = 2.5-5.5 nm). The electron-hole pairs generated by the pump pulse are probed by a second pulse over a broad spectral range (Eprobe = 0.95-1.35 or 1.6-3.25 eV), by which information on excited states is obtained. Under the same excitation conditions, we observe that the induced absorption intensity in the near-infrared range is a factor of ∼10 higher than in the visible range. To account for these observations, we model the spectral dependence of the induced absorption signal using an empirical sp3d5s* tight-binding technique, by which the spectrum can be well reproduced up to a certain threshold. For probe photon energies above this threshold (dependent on nanocrystal size), the induced absorption signal is found to feature a long-standing component, whereas the induced absorption signal for probe photon energies below this value vanishes within 0.5 ns. We explain this by self-trapping of excitons on surface-related states. © 2013 American Physical Society.
Please use this identifier to cite or link to this item: