Pricing of index options under a minimal market model with log-normal scaling

Publication Type:
Journal Article
Quantitative Finance, 2003, 3 (6), pp. 442 - 450
Issue Date:
Filename Description Size
Thumbnail2003000751.pdf482.41 kB
Adobe PDF
Full metadata record
This paper describes a two-factor model for a diversified market index using the growth optimal portfolio with a stochastic and possibly correlated intrinsic timescale. The index is modelled using a time transformed squared Bessel process with a log-normal scaling factor for the time transformation. A consistent pricing and hedging framework is established by using the benchmark approach. Here the numeraire is taken to be the growth optimal portfolio. Benchmarked traded prices appear as conditional expectations of future benchmarked prices under the real world probability measure. The proposed minimal market model with log-normal scaling produces the type of implied volatility term structures for European call and put options typically observed in real markets. In addition, the prices of binary options and their deviations from corresponding Black-Scholes prices are examined.
Please use this identifier to cite or link to this item: