Light-induced reflectivity transients in black-Si nanoneedles

Publication Type:
Journal Article
Citation:
Solar Energy Materials and Solar Cells, 2016, 144 pp. 221 - 227
Issue Date:
2016-01-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnailbsi-rev2.pdfAccepted Manuscript Version4.13 MB
Adobe PDF
© 2015 Elsevier B.V. All rights reserved. The change in reflectivity of black-Si (b-Si) upon optical excitation was measured by the pump-probe technique using picosecond laser pulses at 532 (pump) and 1064 nm (probe) wavelengths. The specular reflection from the random pattern of plasma-etched b-Si nano-needles was dominated by the photo-excited free-carrier contribution to the reflectivity. The kinetics of the reflectivity were found to be consistent with surface structural and chemical analysis, performed by scanning and transmission electron microscopy, and spectroscopic ellipsometry. The surface recombination velocity on the b-Si needles was estimated to be ~10 < sup > 2 < /sup > cm/s. Metalization of b-Si led to much faster recombination and alteration of reflectivity. The reflectivity spectra of random b-Si surfaces with different needle lengths was modeled by a multi-step refractive index profile in the Drude formalism. The dip in the reflectivity spectra and the sign reversal in the differential reflectivity signal at certain b-Si needle sizes is explained by the model.
Please use this identifier to cite or link to this item: