Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia

Publisher:
CSIRO Publishing
Publication Type:
Journal Article
Citation:
Functional Plant Biology, 2004, 31 pp. 461 - 470
Issue Date:
2004-01
Full metadata record
Files in This Item:
Filename Description Size
2004000416.pdf846.71 kB
Adobe PDF
Xylem sap velocity of two dominant tree species, Eucalyptus crebra F. Muell and Callitris glaucophylla J. Thopson & LAS Johnson, in a native remnant forest of eastern Australia was measured in winter and summer during a rpolonged (> 12 months) and extensive drought. The influence of vapour pressure deficit (VPD) and solar radiation levels onthe velocity of sap was determined. Pronounced hysteresis in sap velocity was observed in both species as a function of VPD and solar radiation. However the rotation of the hysteresis curve was clockwise for the response of sap velocity to VPD but anti-clockwise in the response of sap bvelocity to radiation levels. A possible reason for this difference is discussed. The degree of hysteresis (area bounded by the curve) was larger for the VPD response than the response to solar radiation and also varied with season. A simple linear model was able to predict sap velocity from knowledge of VPD and solar radiation in winter and summer. The consistent presence of hysteresis in the response to sap velocity to VPD and solar radiation suggests that large temporal and spatial models of vegetation water use may require soem provision for the different responses of sap velocity, and hence water use, to VPD and solar radiation, between morninga nd afternoon and between seasons.
Please use this identifier to cite or link to this item: