Thermal stability of nanoporous raney gold catalyst

Publication Type:
Journal Article
Citation:
Metals, 2015, 5 (3), pp. 1197 - 1211
Issue Date:
2015-07-07
Full metadata record
Files in This Item:
Filename Description Size
1.pdfPublished Version1.18 MB
Adobe PDF
© 2015 by the authors; licensee MDPI, Basel, Switzerland. Nanoporous “Raney gold” sponge was prepared by de-alloying an Au-Al precursor alloy. Catalytic tests using a micro-reactor confirmed that Raney gold can serve as an active heterogeneous catalyst for CO oxidation, reduction of NO to N < inf > 2 < /inf > , and oxidation of NO to NO < inf > 2 < /inf > . In general, the specific surface area of a heterogeneous catalyst has an influence on its catalytic efficacy. Unfortunately, gold sponges coarsen readily, leading to sintering of their structure and reduction in surface area. This potentially places constraints on their upper operating temperature in catalytic reactors. Here we analyzed the behavior of Raney gold when the temperature was raised. We examined the kinetics and mechanism of coarsening of the sponge using a combination of in situoptical measurements and Metropolis Monte Carlo modeling with a Lennard-Jones interatomic potential. Modeling showed that the sponges started with an isotropic “foamy” morphology with negative average “mean curvature” but that subsequent thermally activated coarsening will drive the morphology through a bi-continuous fibrous state and on, eventually, to a sponge consisting of sintered blobs of predominantly positive “mean curvature”.
Please use this identifier to cite or link to this item: