A role for transient receptor potential ankyrin 1 cation channel (TRPA1) in airway hyper-responsiveness?

Publication Type:
Journal Article
Citation:
Canadian Journal of Physiology and Pharmacology, 2015, 93 (3), pp. 171 - 176
Issue Date:
2015-01-01
Filename Description Size
Jha & Sharma et al CJPP 2014.pdfPublished Version406.73 kB
Adobe PDF
Full metadata record
© 2015, National Research Council of Canada. All rights reserved. Airway smooth muscle (ASM) contraction controls the airway caliber. Airway narrowing is exaggerated in obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). The mechanism by which ASM tone is dysregulated in disease is not clearly understood. Recent research on ion channels, particularly transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is uncovering new understanding of altered airway function. TRPA1, a member of the TRP channel superfamily, is a chemo-sensitive cation channel that can be activated by a variety of external and internal stimuli, leading to the influx of Ca2+. Functional TRPA1 channels have been identified in neuronal and non-neuronal tissues of the lung, including ASM. In the airways, these channels can regulate the release of mediators that are markers of airway inflammation in asthma and COPD. For, example, TRPA1 controls cigarette-smoke-induced inflammatory mediator release and Ca2+ mobilization in vitro and in vivo, a response tied to disease pathology in COPD. Recent work has revealed that pharmacological or genetic inhibition of TRPA1 inhibits the allergen-induced airway inflammation in vitro and airway hyper-responsiveness (AHR) in vivo. Collectively, it appears that TRPA1 channels may be determinants of ASM contractility and local inflammation control, positioning them as part of novel mechanisms that control (patho)physiological function of airways and ASM.
Please use this identifier to cite or link to this item: