Silver nanoparticles enhance Pseudomonas aeruginosa PAO1 biofilm detachment

Publication Type:
Journal Article
Citation:
Drug Development and Industrial Pharmacy, 2014, 40 (6), pp. 719 - 729
Issue Date:
2014-01-01
Filename Description Size
Silver nanoparticles enhance Pseudomonas aeruginosa PAO1 biofilm detachment.pdfPublished Version2.32 MB
Adobe PDF
Full metadata record
Objectives: Silver nanoparticles (AgNPs) with a size ranging from 7 to 70 nm were synthesized using the ascorbic acid-citrate seed-mediated growth approach at room temperature. Methods: The 8 nm silver particles were prepared using gallic acid in alkaline conditions and used as seed to prepare AgNPs. Results: The presence of ascorbic acid and citrate allows the regulation of size and size distribution of the nanoparticles. The increase in free silver ion-to-seed ratio (Ag+/Ag0) resulted in changes of particle shape from spherical to pseudo-spherical and minor cylindrical shape. Further, a repetitive seeding approach resulted in the formation of pseudo-spherical particles with higher polydispersity index and minor distributions of tetrahedral particles. Citrate-capped AgNPs were stable and did not agglomerate upon centrifugation. The effect of AgNPs on biofilm reduction was evaluated using static culture on 96-well microtiter plates. Results showed that AgNPs with the smallest average diameter were most effective in the reduction of Pseudomonas aeruginosa biofilm colonies, which accounted for 90% of removal. Conclusion: The biofilm removal activities of the nanoparticles were found to be concentration-independent particularly for the concentration within the range of 80-200 μg/mL. © 2014 Informa Healthcare USA, Inc.
Please use this identifier to cite or link to this item: