Time course and regional distribution of cortical changes during acute alcohol ingestion

Taylor & Francis Ltd
Publication Type:
Journal Article
International Journal Of Neuroscience, 2004, 114 pp. 863 - 878
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2004000178.pdf217.69 kB
Adobe PDF
Behavioural effects of alcohol are known to be greater when the blood alcohol is rising, nown as the mellanby effect; however, research investigating the cortical changes during this period is scarce. The objective of tis study was to investigate the efects of consumption of alcohol on cortical activity measured by the electroencephalogram (EEG) during the absorption or rising phase of alcohol. EEG signals were recorded using the entire 10/20 montage system. The experimental design consisted of a repeated measures randomised crossover design in which subjects acted as their ow control. This involved recording two EEG baseline measures, each of which was followed by a placebo or alcohol condition, delivered ovre two days for tech subjects. All subjects has a 50% chance of receiving the alcohol first. All subjects were shown to have mean peak blood alcohol concentration (BAC) levels of around .03%. No significant differences were found between the two baselines. Significant increases inEEG magnitude occurred in thetheta (4-7.75 Hz), alpha 1 98-9.75Hz) and beta 1 (13.25-19.75 Hz) spectrum in the frontal EEG regions, and alpha 1 (8-9.75 Hz) in the central and posterior regions. No significant changes were found in the theta (4-7.75 Hz) or beta (13.5-30Hz) spectrums in the central and psoterior regions. There were also no significant results for alpha 2 (10-13 Hz) in any of the regions. These results suggest that rapid cortical changes occur within the first 35 min after alcohol consumption.
Please use this identifier to cite or link to this item: