Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

Publication Type:
Journal Article
Basic Research in Cardiology, 2007, 102 (2), pp. 133 - 143
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2006008475.pdf1.59 MB
Adobe PDF
Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognised. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No Studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualise the features of the consequent stages of their cacification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were dound to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presnted by vesicles surrounded by several electron-dense layers and these vesicles were dound to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physiochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calfcification in vitro in a manner similar to that ocurring in matrix vesicles in atherosclerotic lesions in situ.
Please use this identifier to cite or link to this item: