Nonlinear biofluvial responses to vegetation change in a semi-arid environment

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Geomorphology, 2007, 89 (1-2), pp. 217 - 239
Issue Date:
2007-01
Full metadata record
Files in This Item:
Filename Description Size
2008003206.pdf2.31 MB
Adobe PDF
The desertification of grassland communities in the Jornada del Muerto Basin, southern New Mexico, USA, has occurred in association with a series of geomorphic responses that have influenced the system of vegetation change. Rainfall simulation experiments indicate that the volume of runoff generated from basin surfaces and its ability to erode are greatly affected by the distribution of vegetation, which ultimately controls processes such as rainsplash erosion, soil infiltrability and crust development. Animal activities also influence rates of sediment movement from unvegetated surfaces by disrupting soil crusts and making loose sediment available for transportation by overland flow. Shrublands in the Jornada Basin have a patchier vegetation cover than grasslands, with vegetated areas (shrubs) being separated by unvegetated (intershrub) zones. The exposed intershrub surfaces are more vulnerable to erosion than the grass and shrub surfaces. Thus, water and sediment yields, calculated using rainfall simulation experiments, were higher for vegetated (shrub and grass) plots than they were for unvegetated (intershrub) plots. The runoff and erosion model, KINEROS2, predicts that at the base of a 100 m slope, shrubland surfaces shed seven times more runoff and 25 times more sediment than grassland surfaces. Evidence to support the prediction of higher rates of erosion in the shrubland can be found in the form of the extensive rill networks that are common in this community.
Please use this identifier to cite or link to this item: