Small-scale demographic variability of the biocolor damselfish, Stegastes partitus, in the Florida Keys USA

Publication Type:
Journal Article
Environmental Biology of Fishes, 2008, 81 (3), pp. 297 - 311
Issue Date:
Filename Description Size
Thumbnail2008004185OK.pdf383.19 kB
Adobe PDF
Full metadata record
The demographic responses of reef fish to their environment can be complex and in many cases, quite strong. Growth, mortality, longevity, and even reproductive effort have been demonstrated to vary for the same species of reef fish over scales of 100s to 1,000s of kilometers due to physiological and ecological interactions. Though few studies have explicitly documented it, this sort of habitat-mediated demography can also exist at very local scales. Here we present the results of a 2-year study of the bicolor damselfish, Stegastes partitus, in the Florida Keys, USA. We measured density and distribution, calculated key demographic rates (growth, survival, and fecundity), and characterized the environment (resident fish assemblage, substrate type and complexity, and food availability) of populations living in two adjacent but different habitats, the continuous fore reef and patchy back reef. Fish on the fore reef had an elevated growth rate and asymptotic size, increased mortality, and higher fecundity than fish on the back reef. We identified four potential causative mechanisms for these differences: food availability; competition; intraspecific density-dependent effects; and predation risk. Our data did not support an effect of either food availability or intraspecific density-dependence, but rather suggested that demographic responses are affected by both competition and predation risk.
Please use this identifier to cite or link to this item: