Impact of bleaching stress on the function of the oxygen evolving complex of zooxanthellae from scleractinian corals

Publication Type:
Journal Article
Journal of Phycology, 2008, 44 (2), pp. 299 - 310
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2007005364OK.pdf421.95 kB
Adobe PDF
Global climate change is leading to the rise of ocean temperatures and is triggering mass coral bleaching events on reefs around the world. The expulsion of the symbiotic dinoflagellate algae is believed to occur as a result of damage to the photosynthetic apparatus of these symbionts, although the specific site of initial impact is yet to be conclusively resolved. Here, the sensitivity of the oxygen evolving complex (OEC) to bleaching stress was studied as well as its natural variation between seasons. The artificial electron donor, diphenyl carbazide (DPC), was added to cultured, freshly isolated and expelled (bleaching treatments only) zooxanthellae suspensions. Chl a fluorescence and oxygen production measurements showed that upon addition of DPC, no restoration of diminished photochemical efficiency occurred under control or bleaching conditions. This result was consistent between 12h and 5d bleaching treatments on Pocilloporadamicornis, indicating that the OEC is not the primary site of damage, and that zooxanthellae expulsion from the host is a nonselective process with respect to the functioning of the OEC. Further experiments measuring fast induction curves (FICs) revealed that in both summer and winter, the temperature when OEC function was lost occurred between 7°C and 14°C above the sea surface temperature. FIC and oxygen production measurements of P. damicornis during exposure to bleaching stress demonstrated that the thermotolerance of the OEC increased above the temperature of the bleaching treatment over a 4h period. This finding indicates that the OEC has the capacity to acclimate between seasons and remains functional at temperatures well above bleaching thresholds.
Please use this identifier to cite or link to this item: