Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration

Taylor & Francis Inc.
Publication Type:
Journal Article
Critical Reviews in Plant Sciences, 2007, 26 (3), pp. 139 - 168
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2009001446OK.pdf1.99 MB
Adobe PDF
Evapotranspiraton (ET) is the second largest term in the terrestrial water budget after precipitation, and ET is expected to increase with global warming. ET studies are relevant to the plant sciences because over 80% of terrestrial ET is due to transpiration by plants. Remote sensing is the only feasible means for projecting ET over large landscape units. In the past decade or so, new ground and remote sensing tools have dramatically increased our ability to measure ET at the plot scale and to scale it over larger regions. Moisture flux towers and micrometeorological stations have been deployed in numerous natural and agricultural biomes and provide continuous measurements of actual ET or potential ET with an accuracy or uncertainty of 10-30%. These measurements can be scaled to larger landscape units using remotely-sensed vegetation indices (VIs), Land Surface Temperature (LST), and other satellite data. Two types of methods have been developed. Empirical methods use time-series VIs and micrometeorological data to project ET measured on the ground to larger landscape units. Physically-based methods use remote sensing data to determine the components of the surface energy balance, including latent heat flux, which determines ET. Errors in predicting ET by both types of methods are within the error bounds of the flux towers by which they are calibrated or validated. However, the error bounds need to be reduced to 10% or less for applications that require precise wide-area ET estimates. The high fidelity between ET and VIs over agricultural fields and natural ecosystems where precise ground estimates of ET are available suggests that this might be an achievable goal if ground methods for measuring ET continue to improve.
Please use this identifier to cite or link to this item: