Hydraulic design of pine needles: One-dimensional optimization for single-vein leaves
- Publication Type:
- Journal Article
- Citation:
- Plant, Cell and Environment, 2006, 29 (5), pp. 803 - 809
- Issue Date:
- 2006-05-01
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
2008000871OK.pdf | 292.33 kB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
Single-vein leaves have the simplest hydraulic design possible, yet even this linear water delivery system can be modulated to improve physiological performance. We determined the optimal distribution of transport capacity that minimizes pressure drop per given investment in xylem permeability along the needle for a given length without a change in total water delivery, or maximizes needle length for a given pressure difference between petiole and needle tip. This theory was tested by comparative analysis of the hydraulic design of three pine species that differ in the length of their needles [Pinus palustris (Engl.) Miller, ∼50 cm; Pinus ponderosa Lawson & Lawson, ∼20 cm and Pinus rigida Miller, ∼5 cm]. In all three species, the distribution of hydraulic permeability was similar to that predicted by the optimum solution. The needles of P. palustris showed an almost perfect match between predicted and actual hydraulic optimum solution, providing evidence that vein design is a significant factor in the hydraulic design of pine leaves. © 2005 Blackwell Publishing Ltd.
Please use this identifier to cite or link to this item: