Bacterial origin recognition complexes direct assembly of higher-order DnaA oligomeric structures

National Academy of Sciences
Publication Type:
Journal Article
Proceedings Of The National Academy Of Sciences ..., 2009, 106 (44), pp. 18479 - 18484
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2008008310OK.pdf1.17 MB
Adobe PDF
Eukaryotic initiator proteins form origin recognition complexes (ORCs) that bind to replication origins during most of the cell cycle and direct assembly of prereplication complexes (pre-RCs) before the onset of S phase. In the eubacterium Escherichia coli, there is a temporally similar nucleoprotein complex comprising the initiator protein DnaA bound to three high-affinity recognition sites in the unique origin of replication, oriC. At the time of initiation, this high-affinity DnaAoriC complex (the bacterial ORC) accumulates additional DnaA that interacts with lower-affinity sites in oriC, forming a pre-RC. In this paper, we investigate the functional role of the bacterial ORC and examine whether it mediates low-affinity DnaAoriC interactions during pre-RC assembly. We report that E. coli ORC is essential for DnaA occupation of low-affinity sites. The assistance given by ORC is directed primarily to proximal weak sites and requires oligomerization-proficient DnaA. We propose that in bacteria, DnaA oligomers of limited length and stability emerge from single high-affinity sites and extend toward weak sites to facilitate their loading as a key stage of prokaryotic pre-RC assembly.
Please use this identifier to cite or link to this item: