Travel time prediction system based on data clustering for waste collection vehicles

Publication Type:
Journal Article
IEICE Transactions on Information and Systems, 2019, E102D (7), pp. 1374 - 1383
Issue Date:
Full metadata record
Copyright © 2019 The Institute of Electronics, Information and Communication Engineers In recent years, intelligent transportation system (ITS) techniques have been widely exploited to enhance the quality of public services. As one of the worldwide leaders in recycling, Taiwan adopts the waste collection and disposal policy named “trash doesn’t touch the ground”, which requires the public to deliver garbage directly to the collection points for awaiting garbage collection. This study develops a travel time prediction system based on data clustering for providing real-time information on the arrival time of waste collection vehicle (WCV). The developed system consists of mobile devices (MDs), on-board units (OBUs), a fleet management server (FMS), and a data analysis server (DAS). A travel time prediction model utilizing the adaptive-based clustering technique coupled with a data feature selection procedure is devised and embedded in the DAS. While receiving inquiries from users’ MDs and relevant data from WCVs’ OBUs through the FMS, the DAS performs the devised model to yield the predicted arrival time of WCV. Our experiment result demonstrates that the proposed prediction model achieves an accuracy rate of 75.0% and outperforms the reference linear regression method and neural network technique, the accuracy rates of which are 14.7% and 27.6%, respectively. The developed system is effective as well as efficient and has gone online.
Please use this identifier to cite or link to this item: