Combination of Silver Nanoparticles and Curcumin Nanoparticles for Enhanced Anti-biofilm Activities.

Publisher:
American Chemical Society
Publication Type:
Journal Article
Citation:
Journal of agricultural and food chemistry, 2016, 64 pp. 2513 - 2522
Issue Date:
2016
Full metadata record
Files in This Item:
Filename Description Size
Loo Manuscript- Revision.docxAccepted Manuscript Version6.77 MB
Microsoft Word XML
Biofilm tolerance has become a serious clinical concern in the treatment of nosocomial pneumonia owing to the resistance to various antibiotics. There is an urgent need to develop alternative antimicrobial agents or combination drug therapies that are effective via different mechanisms. Silver nanoparticles (AgNPs) have been developed as an anti-biofilm agent for the treatment of infections associated with the use of mechanical ventilations, such as endotracheal intubation. Meanwhile curcumin, a phenolic plant extract, has displayed natural anti-biofilm properties through the inhibition of bacterial quorum sensing systems. The aim of this study was to investigate the possible synergistic/additive interactions of AgNPs and curcumin nanoparticles (Cur-NPs) against both Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) microorganisms. The combination of AgNPs and Cur-NPs (termed Cur-SNPs) at 100 μg/mL disrupted 50% of established bacterial biofilms (formed on microtiter plates). However, further increase in the concentration of Cur-SNPs failed to effectively eliminate the biofilms. To achieve the same effect, at least 500 μg/mL Cur-NP alone was needed. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) revealed that combination therapy (Cur-SNPs) was the most potent to eradicate preformed biofilm compared to monodrug therapy. These agents are also nontoxic to healthy human bronchial epithelial cells (BEAS2B).
Please use this identifier to cite or link to this item: