Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils

Publication Type:
Journal Article
Citation:
Journal of Arid Environments, 2016, 129 pp. 102 - 110
Issue Date:
2016-06-01
Full metadata record
Files in This Item:
Filename Description Size
Salinity J Arid Env Crookwell April 2016.pdfAccepted Manuscript Version855.99 kB
Adobe PDF
© 2016 Elsevier Ltd. Ecophysiological studies of remnant wood lands in saline environments are scarce. We investigated seasonal fluctuations in soil water and salinity together with leaf and branch traits (area-based maximum assimilation (A max ), foliar nitrogen, specific leaf area (SLA) and Huber value (H v )) and sap velocities of Eucalyptus macrorhyncha at four semi-arid sites in south-eastern Australia. Summer and winter soil salinities (10 cm depth) were 15-35 dS m -1 and 8-10 dS m -1 respectively. Gravimetric soil water content in the upper 20 cm was 2-5% in summer and 7-23% in winter, resulting in a significant inverse correlation between soil water and soil salinity. We found significant correlations between soil conditions and plant traits and function across seasons. Soil water content was significantly correlated with foliar N, SLA, H v and maximum sap velocity while soil salinity was significantly correlated with A max , H v and maximum sap velocity. Correlations indicate co-variation of soil conditions and plant physiology in response to environmental conditions such as solar radiation and vapour pressure deficit (D). E. macrorhyncha tolerates the dual stresses of high salinity and low soil water during summer. While the plants appeared unhealthy, our data show that remnant vegetation can remain functional even in close proximity to saline scalds.
Please use this identifier to cite or link to this item: