Online estimation of ocean current from sparse GPS data for underwater vehicles

Publication Type:
Conference Proceeding
Citation:
Proceedings - IEEE International Conference on Robotics and Automation, 2019, 2019-May pp. 3443 - 3449
Issue Date:
2019-05-01
Filename Description Size
Fitch_ICRA19_CurrentEstimation_finalsubmitted.pdfAccepted Manuscript Version1.23 MB
Adobe PDF
Full metadata record
© 2019 IEEE. Underwater robots are subject to position drift due to the effect of ocean currents and the lack of accurate localisation while submerged. We are interested in exploiting such position drift to estimate the ocean current in the surrounding area, thereby assisting navigation and planning. We present a Gaussian process (GP)-based expectation-maximisation (EM) algorithm that estimates the underlying ocean current using sparse GPS data obtained on the surface and dead-reckoned position estimates. We first develop a specialised GP regression scheme that exploits the incompressibility of ocean currents to counteract the underdetermined nature of the problem. We then use the proposed regression scheme in an EM algorithm that estimates the best-fitting ocean current in between each GPS fix. The proposed algorithm is validated in simulation and on a real dataset, and is shown to be capable of reconstructing the underlying ocean current field. We expect to use this algorithm to close the loop between planning and estimation for underwater navigation in unknown ocean currents.
Please use this identifier to cite or link to this item: